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Since the successful exfoliation of graphene in 2014, two-
dimensional  (2D)  materials  have  explosively  increased  in  the
past few years[1]. 2D pnictogen materials with intriguing prop-
erties  beyond  graphene  are  gradually  coming  into  eyesight,
such  as  black  phosphorous  (BP)[2],  arsenene[3],  antimonene[4],
bismuthine[5],  etc.  BP  is  a  star  material  in  2D  materials.  It  has
high  carrier  mobility  and  tunable  bandgap,  and  its  bandgap
locates  between  that  of  graphene  and  transition  metal  sul-
fides  (TMS),  enabling  its  application  in  photonic  and  elec-
tronic  devices.  To  further  explore  the  excellent  properties  of
BP  and  broaden  its  application,  alloying  BP  with  other  for-
eign atoms is an effective strategy to enhance the properties.
By  alloying  BP  with  different  equivalents  of  arsenic  atoms,  a
series  of  black  arsenic  phosphorous  (b-AsP)  can  be  obtained.
It  retains  the  crystal  structure  of  BP  but  produces  tunable
bandgap.  Thus,  many  new  properties  can  be  found.  The  pio-
neering  works  on b-AsP  are  limited  to  theoretical  calcula-
tions and some synthesis methods.

Arsenic  phosphorous  alloys  have  been  studied  since
1980s[6]. High-quality b-AsP crystals were synthesized by chemi-
cal  vapor  transport  (CVT)  method[7].  However,  layered b-AsP
came  into  view  in  2015,  and  it  offsets  the  deficiencies  of  BP
in some respects[8]. As shown in Fig. 1(a), the arsenic and phos-
phorus  atoms  are  alternatively  distributed  with  the  same
valence  bond  in  a  single  atomic  layer  of b-AsP,  forming  an
orthorhombic  lattice  with  a  puckered  honeycomb  structure.
Theoretical  calculations  predicted  that b-AsxP1−x can  be  real-
ized only when x < 0.83. Otherwise, the structure of phospho-
rus-arsenic  alloy  will  be  transformed  into  a  gray-arsenic-
like  structure.  The  bandgap  structure  of b-AsP  is  shown  in
Figs. 1(b) and 1(c), in which the doping of arsenic atoms effec-
tively  narrows  the  bandgap  of b-AsP.  The b-As0.83P0.17 with
the  highest  arsenic  content  has  a  bandgap  of  0.15  eV  mea-
sured  from  infrared  absorption,  while  the  bandgap  of  BP  is
0.3 V. Obviously, the bandgap of b-AsP locates at 0.15−0.3 eV.
Based on such narrow bandgaps, a series of mid-infrared detec-
tors  were  fabricated.  In  2016,  Xie et  al. demonstrated  that
monolayer b-AsP  is  a  promising  donor  with  a  1.54  eV  direct
bandgap.  Another  special  feature  of b-AsP  is  the  high  carrier
mobility[9].  As  early  as  1987,  phosphorus-arsenic  alloys  were
found  to  be  superconductive  under  high  pressure[6].  In  2016,
more  in-depth  research  proved  that  the  electron  mobility  of
b-AsP could reach 1977 cm2/(V∙s)[10]. Later, the anisotropic car-

rier migration behavior and bipolar transport properties were
reported.

Compared  with  BP,  the  dual-composition  nature  and
adjustable  ratio  make  the  synthesis  of  ultrathin b-AsP  layers
much  difficult.  The  CVT  method  is  the  most  convenient  and
mature  way  to  prepare  high-quality b-AsP  single  crystal
(Fig. 1(d)). Unlike BP, the interlayer interactions of b-AsP are dif-
ficult  to  overcome  by  the  usual  top-down  method  due  to  its
asymmetric atomic arrangements in the layer.  The thinest 2D
b-AsP  obtained  by  mechanical  exfoliation  was  reported  by
Liu et  al. in  2015[8].  They  prepared  1.3  nm  thick b-AsP  bilayer
flake (Figs. 1(e) and 1(f)).  However, owing to the impurity and
instability  of  the  surface,  only  15  nm  thick  nanosheets  were
selected  for  further  study  of  mid-infrared  response.  The  liq-
uid phase exfoliation method can generate a large number of
b-AsP  thin  layers,  which  is  suitable  for  the  saturable
absorbers  (SA)  in  fiber  lasers[11] (Fig.  2(a)).  However,  we
should  note  some  disadvantages  of  this  method,  such  as
uncontrollable  thickness,  small  lateral  scale  and  many  sur-
face defects.

The  bottom-up  method  is  the  most  promising  method
for  preparing  monolayer b-AsP.  With  the  help  of  thin-film
deposition systems, the synthesis of monolayer b-AsP with dif-
ferent  element  ratios  could  be  realized  by  precisely  control-
ling  the  growth  temperature  and  the  source  material  weight
ratio.  In  2018,  Eric et  al. first  synthesized  wafer-scale b-AsP
material with a thickness of 6 nm via molecular beam deposi-
tion  (MBD),  which  demonstrates  the  feasibility  of  bottom-up
synthesis  of  2D b-AsP  materials[12] (Fig.  2(b)).  However,  there
is still  no feasible method to make monolayer b-AsP by using
bottom-up  method.  Making  monolayer b-AsP  on  a  substrate
needs  to  overcome  many  difficulties.  First,  a  suitable  sub-
strate  is  required  to  induce  the  epitaxial  growth  of  mono-
layer  arsenic  phosphorus  crystals.  Second,  the  decomposi-
tion  of  phosphorus  sources  and  arsenic  sources  needs  to
overcome high energy barriers.  So far,  the research works  on
monolayer b-AsP still stagnate at the stage of theoretical calcu-
lations.  Breaking  through  the  thickness  limit  of b-AsP  materi-
als is still a challenge.

b-AsP  has  some  applications.  The  air-stable  mid-wave
infrared  photodetector  made  of b-AsP  offered  a  responsivity
of  190 mA/W for  3.4 μm incident light[13] (Figs.  2(c)  and 2(d)).
Field-effect  transistors  made of b-AsP  had a  high hole  mobil-
ity  of  307  cm2/(V∙s)  at  a  drain  voltage  of  0.01  V[14].  Besides,
the  anisotropic  carrier  migration  behavior  and  bipolar  trans-
port  properties  of b-AsP  were  also  demonstrated  by  FET
devices[15]. b-AsP can also be used as the anode in Li-ion batter-
ies[16].

  
Correspondence to: L M Ding, ding@nanoctr.cn; Z Jin,

zhongjin@nju.edu.cn
Received 17 JANUARY 2024.

©2024 Chinese Institute of Electronics

RESEARCH HIGHLIGHTS

Journal of Semiconductors
(2024) 45, 030201

doi: 10.1088/1674-4926/45/3/030201

 

 
 

https://doi.org/10.1088/1674-4926/45/3/030201
https://doi.org/10.1088/1674-4926/45/3/030201
https://doi.org/10.1088/1674-4926/45/3/030201
https://doi.org/10.1088/1674-4926/45/3/030201
mailto:ding@nanoctr.cn
mailto:zhongjin@nju.edu.cn


 

Fig. 1. (Color online) (a) b-AsxP1−x crystal. (b) The band structure of multilayer b-AsP. (c) Enlarged image of the energy band in (b), in which the
band has been split into four sub-bands. Reproduced with permission[17], Copyright 2018, IOP Publishing. (d) b-As0.83P0.17 crystal synthesized by
CVT. Reproduced with permission[7], Copyright 2015, WILEY-VCH. (e) AFM image for an exfoliated bilayer b-As0.83P0.17 flake. (f) Height profile for
the exfoliated bilayer b-As0.83P0.17 flake with a thickness of ~1.3 nm. Reproduced with permission[8], Copyright 2019, Optical Society of America.

 

Fig. 2. (Color online) (a) The preparation of 2D b-AsP nanosheets by the liquid-phase exfoliation method. Reproduced with permission[11], Copy-
right 2020, American Chemical Society. (b) The MBD synthesis of b-AsP alloys. Reproduced with permission[12], Copyright 2018, American Chemi-
cal Society. (c) The hBN/b-As0.83P0.17/hBN heterostructure photodetector. (d) The cross-section of the device by TEM is shown on the left. The ele-
mental mapping is shown on the right. Reproduced with permission[13], Copyright 2018, American Chemical Society.
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In  short, b-AsP  is  a  new  member  of  2D  layered  pnicto-
gen  materials.  The  property  of b-AsP  changes  with  As/P
ratios. This 2D material may find new applications in the near
future. 
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